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PREFATCETE

Manned lunar missions, to be implemented under
Project Apollo, will include a low altitude, near circular,
lunar orbital phase of short duration, Follow-on missions may
require extended time in such an orbit. Hence, pre-mission
planning for operations in the near lunar space environment
will be based on estimates of orbital variations for both
short-and long-term motion of the space vehicle. A realistic
approach to the problem of establishing orbit characteristics
would necessarily include a determination of how the noncentral
lunar gravitational field, acting in conjunction with the per-
turbing influences of the Sun and planets, will affect the ve-
hicle!'s trajectory. The present investigation is concerned
with this problem and was motivated, in part, by the recent
acquisition of modified JPL computer tapes, providing an ac-
curate solar system ephemeris for the years 1950 to 2000.
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ABSTRACT

Near-circular lunar satellite orbits of low incli-
nation, corresponding to the types planned for Apollo missions,
are investigated numerically as a four-body problem., A com-
puter program was written to numerically integrate a modified
set of perturbation equations which is free of the small ec-
centricity restriction encountered in the classical Lagrangian
set. Machine plots are obtained for the time variation of
local maximum and minimum values of the short period oscilla-
tions in the orbit elements over a total time span equivalent
to one complete circuit of the Moon about the Earth (the
anomalistic period).

The perturbed acceleration of the satellite is gen-
erated by the second-order term of the lunar gravitational
force potential and a disturbing function incorporating the
effects of the Earth and Sun, both considered as point masses.
The Earth-Moon node is assumed to regress at a constant rate.
The computer routine receives disturbing body position data
from modified JPL Ephemeris Tapes. The results for eight sets
of initial conditions are presented in tabular and graphical
form. It is concluded that all orbit types considered exhibit

a high degree of stability for a period of 28 days.
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NOMENTCLATURE
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[A] Coordinate transformation matrix
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Xms>YmsZm Geocentric inertial coordinates of Moon in units of

"Eatrth Radii'" referred to the mean equinox and

equator of 1950.,0
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Heliocentric inertial coordinates of Earth-Moon
barycenter referred to the mean equinox and equator
of 1950.0

Coordinates measured from axes fixed in space
Angle measured from X axis to x axis
Inclination of lunar equator to ecliptic

Mean obliquity of ecliptic

Angle measured from X axis to x' axis

Value of 6 for J.D. 2440616,0

Lunar gravitational constant
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Sun's position vector from satellite

Argument of pericentron

Longitude of the mean ascending node of the lunar
orbit on the ecliptic measured from the mean equinox
of date

Longitude of ascending node of satellite orbit
measured in the epoch (J.D. 2449616.0) lunar
equatorial plane from the x-axis

Mean Vernal equinox of date

Vector notation

First derivative of ( ) with respect to time

Second derivative of ( ) with respect to time
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. INTRODUCTION

The potential military and political advantages
associated with extensive exploration of the Moon has induced
the United States and the Soviet Union to implement accele-
rated space programs to achieve a manned lunar landing prior
to the next decade. Russia's recent successful injection of
a space probe into lunar orbit demonstrates the feasibility
of manned lunar missions. Current GEMIN| flights of the United
States are establishing effective rendezvous techniques to be
used on the manned lunar missions of Project Apollo.

Apollo mission philosophy calls for injection of a
manned spacecraft into near-circular lunar orbit at an alti-
tude of from 50 to 150 miles. A lunar excursion vehicle will
separate from the command module, descend to a preselected
point above the Moon's surface, and make a soft landing. After
a suitable lunar stay, the excursion vehicle will be launched
from the lunar surface and will rendezvous with the orbiting
stage. Successful execution of this near-lunar phase will
depend on an accurate determination of the orbiting stage po-
sition and the capability of predicting its motion. It is,
therefore, essential that the characteristics of lunar satel-
lite orbits be established prior to mission execution.

In contrast with the well documented Earth-satellite
problem, relatively little has been published on the equivalent

1



lunar problem. Because of the lack of similarity between
Earth and Moon satellite theory, little new information on
the lunar problem can be gained By comparing the two types.
An introduction to lunar satellite theory is presented in
Reference 17.* A comprehensive discussion of the basic geom-
etry of the Earth-Moon system appears in Reference 3. The
details associated with the development of the perturbation
theory used in this report may be found in References 9, 19
and 20,

Some of the published investigations to date reveal
two quite different approaches to the lunar satellite problem,
One approach leads to approximate closed form solutions to
Lagrange's Planetary equations, a set of first-order nonlinear
differential equations for the time variation of the orbit
elements., Another method employs high speed digital computa-
tion to numerically integrate the perturbation equations. In
general, the first approach is suited to studies of long term
motion, while the numerical approach is usually limited to
studies of short term motion from a consideration of economy
with respect to machine computation time.

>

Lass and Sollowayl obtain approximate solutions for
the motion of a satellite of the Moon by simplifying Lagrange's
equations and by using the averaging process of Kryloff-

Bogolinboff, Solar effects are neglected and the Moon is as-

sumed to be a triaxial ellipsoid in circular orbit about a point

“References appear on pp. 57-58.



mass Earth. They conclude that a lunar satellite initially in
a circular polar orbit of small radius will deviate little from
this configuration over a period of six months, Lorell,l7
using the same Earth-Moon model, estimates the relative impor-
tance of lunar, Earth and solar gravitational effects on a sat-
ellite based on some long term and secular variations of the

orbit elements. Tolsonzh

has developed a first-order approxima-
tion to the equations of satellite motion neglecting all per-
turbing effects except the Moon's noncentral force field., From
a first-order solution to the perturbation equations, Wells?>
determines the effect of the Moon's third zonal harmonic on the
satellite's pericenter distance. He obtains an envelope for
initial orbit orientation that will result in long satellite
lifetimes, where '"lifetime' means the time associated with a
36-kilometer change in‘pericenter distance.

Numerical integration of Lagrange's equations, or al-
ternately the equations of motion, has been reported by several
investigators, three of which are mentioned here. Brumberg6
assumes a point mass Earth and Sun and uses two body equations
to describe their motion with respect to the Moon, which is con-
sidered a triaxial ellipsoid. The satellite equations of motion
are integrated over a period of LO revolutions for both polar
and equatorial orbits of large and small eccentricities. A tab-
ulation of initial and final orbit element values shows all
orbits to be highly stable. It is interesting to note, in view

of the Lass and Solloway conclusion, that the small eccentricity

polar orbit shows practically no deviation from the initial



orbit orientation. A similar study has been reported by
Goddardll who obtains a computer solution to Lagrange's equa-
tions for the same orbit types considered by Brumberg.
Goddard, however, excludes the Sun and considers a point mass
Earth in circular orbit about the Moon. A comparison of end
point values of the orbit elements, for two polar orbits, with
those obtained by Brumberg reveals a significant disagreement,
especially for the semimajor axis. The fact that these inves-
tigators used different numerical integration methods (each
having a different accuracy standard) and significantly differ-
ent mesh sizes could account for the disagreement.

Goddard's computer program has since been modified by
Bornh who assumes a point mass Earth moving in a Keplerian el-
lipse about the Moon. Initial orientation of the Earth-Moon
system is determined from a truncated form of Brown's series
expansions given in Reference 2, By retaining only local max-
imum and minimum orbit element values of the short period
variations, Born obtains an envelope for these variations for
80 revolutions of the satellite (equivalent to about 7 mean
solar days). He considers circular orbits at two altitudes,
50 and 150 miles from the lunar surface, having inclinations
of 0.5°, 10° and 20° (direct orbits) and 160°, 170° and 179.5°
(retrograde orbits). He concludes that all orbit types ex-
hibit a high degree of stability for a period of 80 revolutions,
and that there is no indication of future instability. Born
recommends that the integrations be carried out over a period

of one month and that the study be expanded to include solar



>

effects. Based on anticipated perturbations of lunar orbiters,

1k

Kaula suggests that determination of the amplitudes of semi-
monthly and monthly oscillations of the orbit eiements would be
desirable.

The investigation described herein was motivated by
the foregoing recommendations and the recent acquisition of
JPL Ephemeris Tapes, modified for use with the CDC 1604 computer
at The University of Texas. The tapes contain position and ve-
locity coordinates, accurate to 12 decimal digits, of the major
bodies of the solar system. A completely new computer program
was written, incorporating the integration method (Adams-Moulton)
used by Born, to include solar effects, to provide for a re-
gressing Earth-Moon node, and to provide the capability of ob-
taining Earth and Sun position data from the Ephemeris Tapes.
A modified set of Lagrange's Planetary (perturbation) equations,
defining the time variation of the satellite orbit elements, are
numerically integrated over an interval of 27.55 days. Initial
conditions are identical to those of Born, except that inclina-
tions of 10° and 170° are not considered. |In the Results Sec-
tion initial and final values of the orbit elements are tabu-
lated, and envelopes of the short period variations are presented
graphically. Presented also, is a tabular comparison with Born's

results, based on 80 revolutions,



1. ANALYSIS

A. Problem Description and Assumptions

Due to the rather complex nature of the lunar
satellite problem, realistic solutions are usually not easy to
obtain. The degree of problem complexity will depend mainly on
desired accuracy limits. The simple, closed-form, two-body
solution is obtained with ease, but it is hopelessly inadequate
for describing the true motion of a lunar satellite. The pres-
ence of other celestial bodies, such as the Earth and Sun, will
cause the satellite to deviate from an elliptical path, so that
the orbit elements will vary with time. A reasonably accurate
account of the motion requires consideration of the highly non-
linear n-body problem, for which no closed-form solution exists.
Fortunately, the digital computer provides a means for attack-
ing the problem in its most general form. On the other hand,
computer limitations and lack of precision in the physical con-
stants make it desirable to simplify the problem to the extent
possible without compromising desired accuracy limits. For
this analysis the limits are arbitrarily set at + 100 meters
in satellite range, This error tolerance is equivalent to pre-
cision through five decimal digits for the orbit types con-
sidered.

The perturbing forces that will influence the motion

of the satellite are caused by the following:

6



(1) Moon's noncentral gravity field

(2) Earth's gravity field

(3) Sunts gravity field

(4) Gravity fields of the planets

(5) Gravity fields of bodies exterior to the solar

system

() Solar radiation pressure,
The relative importance of these perturbing factors depends on
the type of satellite and its orbit geometry. According to Lass

15

and Solloway, the principal perturbing affects on a near-lunar
satellite are caused by the first three effects in the above
list., They estimate that the Moon's perturbing effect on a
satellite is slightly more dominant than the Earth's effect, the
latter being about 200 times greater than the Sun's effect. The
relative importance of planetary influences can be estimated by
applying Newton's inverse square law of gravitation (F/m =GMi/r2),
where F/m is the acceleration of a satellite of mass m and
M; is the mass of the disturbing body at a distance r from
the satellite. Calculations for each planet at inferior con-
junction will yield the maximum acceleration. It is found that
the Sun produces a satellite acceleration of approximately

-6

KM/sec2 and that planetary effects range from

2 for Jupiter to .1 x lO‘lh KM/sec2 for Pluto.

6 x 10

-10

3 x 10 KM/sec

The nearest star, Alpha Centuri, at a distance of 4.3 light
years from the Sun, will have an effect of the order to

_15

10 KM/secg. Here, the star is assumed to be as massive as

the Sun. For a satellite of high density, it can be shown that



the solar radiation effect is smaller than Jupiter's effect.
Since Jupiter's effect is extremely small compared to the Sun's
effect, the initial decision was to temporarily neglect all per-
turbing forces except those due to the Moon, Earth and Sun,
pending computer test runs to determine the importance of solar
effects., Subsequently, two computer runs were made, one includ-
ing the Sun and the other neglecting it. Comparison of the two
sets of results showed that the amplitude of the oscillations of
the semi-latus rectum was changed by about 0.05%, which is equiv-
alent to a change in satellite position of less than one meter,
The other orbit elements showed changes that were less than
0.05%. The results of this test confirms the soundness of the
original decision. Moreover, the Earth and Sun can be treated
as point masses, because the effect of their noncentral gravity
fields on a near-lunar satellite is negligible for studies of
short-term motion. The lunar noncentral gravity field, however,
will have significant effects on a satellite that is close to
the Moon,

It is generally conceded that a triaxial ellipsoid
closely approximates the true shape of the Moon. Since very
little is known concerning the Moon's mass distribution, it has
been common practice to assume that it is uniform throughout.

It will be necessary, later in this analysis, to relate the
inertial coordinates of the satellite to the principal axes of
inertia of the Moon. To achieve a high degree of accuracy, this
particular transformation must account for the mean rate of re-

gression of the ascending node of the Earth-Moon orbit (about



1.5° per month), the nodes libration in longitude, and the
Moon's dynamic librations in latitude and longitude. According

13

to Kalensher, the maximum monthly variation of these libra-
tions is less than 0.005°, which is quite small relative to the
mean rate of change of the node.

In view of what has been said in the foregoing dis-
cussion, the mathematical formulations for this analysis are
based on the following assumptions:

(1) The only significant perturbing influences are
due to the Moon's noncentral gravity field and
the gravity fields of the Earth and Sun.

(2) The Earth and Sun are point masses.

(3) The mass of the satellite is negligible compared
to the Moon's mass.

(4) The Moon is a triaxial ellipsoid of uniform mass
distribution.

(5) Neglecting the libration of the mean ascending
node of the Earth-Moon orbit and the dynamic
librations of the Moon in latitude and longitude
will have a negligible effect on the accuracy of
the results.

These assumptions must be incorporated into a set of
perturbation equations which define the time rates of change of
the satellite orbit elements., Before introducing these equa-
tions, it will be instructive to describe the Modified JPL
Ephemeris Tapes, and to define coordinate systems and pertinent

transformations.
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B. Modified JPL Ephemeris Tapes

The Jet Propulsion Laboratory of the California
Institute of Technology has developed an ephemeris for the major
bodies of the solar system. Position and velocity data, accu-
rate to 12 places, has been stored on magnetic computer tapes
to be used with the IBM 7090 computer in conjunction with the
JPL Space Trajectories Program.12

JPL tapes, covering the years 1950-2000, have been
recently modified for use with the Control Data Corporation 160k
computer at The University of Texas. A description of the modi-
fied tapes and directions for their use may be found in Refer-
ence 7. Tape data required for this study consists of the
heliocentric coordinates, in astronomical units, of the Earth-
Moon barycenter and the geocentric coordinates of the Moon in
units of Earth radii. The position and velocity components are
referred to a rectangular cartesian coordinate system whose ref-
erence plane and reference direction coincide with the mean
equator and equinox of 1950.0 (Julian Date 2433282.423357).
The standard constants for converting astronomical units and
Earth radii to kilometers, as given in Reference 8, are
1 A.U. = 149599000KM and 1 Earth radius = 6378.3255 KM. How-
ever, the value of one Earth radius used for this investigation,
and the value recommended according to Reference 22, is
1 Earth radius = 6378.327 KM, The difference in these two val-
ues (0.0015 KM) results in an insignificant difference (less
than 0,09 KM) in the Earth's selenocentric coordinates. Hence,
for this study, either value of this conversion constant could

be used.
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C. Coordinate Systems

For this analysis three selenocentric coordinate
systems are specified in addition to the 1950.0 system asso-
ciated with the JPL Ephemeris Tape data. All coordinate sys-
tems are orthogonal and right-handed in the vector sense.

(1) Selenocentric "Inertia' System (x,y,z). For

convenience in referencing the satellite orbit elements, the
primary coordinate system is chosen such that its origin is at
the Moon's center of mass and its angular orientation is in-
variant with respect to a fixed direction., This system is not
"inertial' in the absolute sense, because the origin is trans-
lating along a curved path relative to the Sun. However, by
virtue of the nonrotating feature, the equations of relative
motion, based on Newton's law, are valid. At time zero for
this study the x-axis is defined by the intersection of the
lunar equatorial plane and the ecliptic plane, and it is direc-
ted towards the mean ascending node of the Earth-Moon orbit
(see Fig., 1). |If the z-axis coincides with the Moon's spin
axis and if it is directed towards the north celestial hemi-
sphere, the y-axis will lie in the lunar equatorial plane,.

(2) Body-Fixed Selenocentric System (x',y',z'). The
b bl

(x',y',z')-coordinate system shown in Fig. 1 will coincide with
the Moon's principal axes of inertia such that the x'-axis is
directed toward the Earth and the z'-axis is directed towards
the north celestial hemisphere., Since this system is body-
fixed, it will rotate with the Moon and the z'-axis will always

be coincident with the Moon's spin axis.
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(3) Rotating Selenocentric System (X,y,Z). To relate

the regressional motion of the line of nodes of the Earth-Moon
system to the primary coordinate system, define the Moon cen-
tered (X,y,Z)-system such that the X-axis is in the ecliptic
plane and is always directed towards the mean ascending node

of the Earth-Moon orbit as shown in Fig. 1. At time zero the
(X,¥,Z)-coordinate system will be coincident with the (x,y,z)-
system, The rotational motion of the (X,y,Z)-coordinates
(viewed from the positive z-axis) will be described by a clock-
wise rotation about a line which is normal to the ecliptic
plane.

(4) Reference for Solar System Ephemerides (X,Y,Z).

It will be seen later that the equations for the perturbing
acceleration of a lunar satellite will contain the coordinates
of the Earth and Sun referred to the primary system. As was
mentioned previously, the modified JPL Ephemeris Tapes provide
heliocentric Earth-Moon barycenter position (in A.U.) and geo-
centric lunar position (in Earth radii) referred to the system
of the mean equinox and equator of 1950,0., To distinguish be-
tween the two different origins, let X,,Y, ,Z, denote heliocen-

tric barycenter coordinates and X _,Y ,Z

m>YmsZym denote geocentric

lunar coordinates,

D. Coordinate Transformations

Three different coordinate transformations are re-
quired for the subsequent computations, The first two relate

Earth and Sun coordinates in the 1950.0 system to the
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selenocentric inertial system. The third relates satellite
inertial coordinates to the selenocentric body-fixed system
(x',y',2").

(1) Transformations for Earth and Sun Coordinates.

The selenocentric inertial coordinates of the Earth and Sun are

given by
Xg Yh
Yo | = - Ky[DI[CI[BI[AT|T, (1)
zg fm
Xs Xe 7(_b
Ys | = Kolve | - K3[D][C][B][A] Yy (2)
zg zg ZB

where the e and s subscripts denote the Earth and Sun, re-
spectively. The quantities K;, Kp, K3 are conversion con-

stants and [A]l, [B], [C], [D] are rotation matrices to be shown
in detail later in this section. The recommended value for Ky
(Reference 22) and the standard values for Ky and Kj (Refer-

ence T7) are

Ky = 6378.327
Ko = 398603.2/403505.9
Ky = 149599000.0
where Ky is the number of kilometers in one Earth radius,
Ko is the Earth-Moon barycenter distance from the Moon expressed

as a fraction of the total distance between the Earth and the
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Moon, and K3 is the number of kilometers in one astronomical
unit. Matrix A transforms coordinates referred to the mean
equinox and equator of 1950.0 to coordinates referred to the

mean equinox and equator of date, It is given by the following

expression12

a a

11 12 @

13
o0 903

431 @32 233

The matrix elements are defined by

aj; = 1 - 0.00029697 T2 - 0.00000013 T3
815 = - @y, = - 0.02234988 T - 0.00000676 T2 + 0.00000221 T3
aj3 = - ag; = - 0,00971711 T + 0.00000207 T2 + 0.00000096 T3
aj, = 1 - 0.00024976 T? - 0.00000015 T2
353 = a3p = - 0.00010859 T2 - 0.00000003 T3
aj3 = 1 - 0.00004721 T2 4 0.00000002 T3

where T is the number of Julian centuries of 36525 days past

the epoch oh January 1, 1950, E.T. (J.D. 2433282.5), hereafter
referred to as the "Epoch.'" Note that the expression for ajy
is listed incorrectly in Reference 7, Matrix B rotates coordi-
nates referenced to the mean equinox and equator of date through
the angle ¢, where <€ is the mean obliquity of date. It is

defined by the following

sin ¢

™|

B = 0 cos

0 - sin € cos ¢
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A truncated expression for e, as given in Reference 13, is

€ = 23°4k5787h - 0201301376 T - 028855 x 1076 18
+ 07503 x 1076 13
where T is defined as before. Matrix C transforms ecliptic

coordinates, referenced to the mean equinox of date, to ecliptic
coordinates referenced to the selenocentric inertial x-axis and

is defined by

cos Qp sin Qn 0
C = |- sin Q, cos Qn 0
o) 0 1
where Q_ is the longitude of the mean ascending node of the

lunar orbit on the ecliptic, measured from the mean equinox of

date, and is given by12
Q, = 1271127902 - 070529539222 d + 207795 x 107H 7
+ 20%°81 x 107% 12 4 0%02 x 107% 73
where T is defined as before and d is the number of ephem-
eris days elapsed since the "Epoch." Matrix D rotates the co-

ordinates obtained from the previous transformation through the

angle &, about the x-axis. Hence,
1 0 0
D =10 cos B - sin B
0 sin B cos B
where & is the inclination of the mean lunar equator to the

ecliptic and is assigned the constant value of 17535, as listed

in Reference 1.
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(2) Satellite Coordinate Transformation. The satel-

lite selenocentric inertial coordinates are transformed to

selenocentric body-fixed (x',y',z')-coordinates by the follow-

ing formulas

-x' - [ cos 6 sin 6 O- -§

y' = - sin © cos 6 0 y

Lz' ] ] 0 0 1 _ZJ
x 1 0 0 cos @ -sina Of|1L 0 0 x
Yy |=10 cos 8 -sin df|sina <cosa Of||0 cos ® sin 5|y
z 0O sin B cos B 0 0 11|00 =-sin & cos d}|z

The quantities 6, @ and & are shown in Fig. 1. The angle

6 is measured in the lunar equatorial plane between the Xx-axis
and the x'-axis. The angle « 1is measured in the ecliptic
plane between the Xx-axis and the x-axis. Since the libration

in longitude of the Earth-Moon node and the Moon's dynamical
librations are neglected in this analysis, the following ex-
pressions can be used
8 = 6, + 6t
69 = (Ly = @p - 180°),
= l.-m - fln
@ = - aQpt

where 65 is the value of 6 evaluated at J.D. 2L40616.0,

t is the number of seconds past this epoch, L, is the mean lon-

m

gitude of the Moon measured in the ecliptic from the mean equi-

nox of date to the mean ascending node of the lunar orbit, and



18
then along the lunar equator. The dots denote derivatives with
respect to time. Expressions for the remaining quantities are

given in Reference 12 as

L = 64237545167 + 13°1763965268 d - 11231575 x 10'h T

m

11°3015 x 10-% T2 + 0°019 x 10~ % 73

Lm = 0.266170762 x 1072 - 0,12499171 x 10783 1 rad/sec

Q= - 0.1069698435 x 107 + 0.23015329 x 10713 T rad/sec.
The term linear in T in the equations for Lm and Qn can
be neglected since, for the time period of interest (T = 0.2),

its value is negligible compared to the value of the constant

term, Then, at time zero (J.D., 2440616.0), we have

6 = 0.8674880674 + 0.2672404604L(1072)¢t
o = 0.1069698435(107 ()t
where 8 and o are expressed in radians. Combining the co-

ordinate rotation matrices yields the following expression

_ - -
X'T M1 M2 M3 X
y' | = Moy Moo mosg ||y (3)
Lz'd LmBl m3o m334_zd
where
my; = cos 6 cos a + sin 6 sin o cos ®
myy = - sin 6 cos @ + cos 6 sin @ cos B

sin @ sin d
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Mys = - cos 6 sin @ cos 5 + sin 6 (cos o cos?s + sin26)
Moy, = sin 6 sin o cos & + cos 6(cos o cos?s + sin26)
m3p = - sin B cos 5(1 - cos a)
my3 = - cos 6 sin @ sin & - sin 6 sin & cos 5(1 - cos a)
mog = sin 6 sin o sin 3 - cos 6 sin & cos &(1 - cos «)
= ind 2
m33 COos ¢ sin“d®d 4+ cos<H
E. Perturbation Equations

In general, six parameters, or orbit elements, will
describe a satellite orbit. For Keplerian two-body motion the
elements are constant. When other bodies are present or when
the primary body is asymmetrical, the simple two-body orbit is
perturbed such that the orbit elements show a variation with
time. A classical set of perturbation equations (due to
Lagrange), which give the time variation of the orbit elements,
are developed in Reference 19. Since these equations contain
singularities for zero eccentricity, they are not used in prob-
lems involving circular orbits. An alternate set of equations,
which do not possess the zero eccentricity restriction, are de-
rived in Reference 4. These equations are adopted for this

investigation. They are given by the following expressions:

h sin I (cont.)
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A=B¢§ cos I+ ﬁ <¢ sin u(R) + [A + (1 + V¥)cos u](S)>
B=-AQ cos I+F:—{-\J;cos u(R) + [B + (1L + ¥)sin u](S)}

. h .

u = = - Q cos I (W)

where the following definitions apply:
P : Semi-latus rectum
I : Inclination of the satellite orbit plane to the
lunar equatorial plane
8 : Longitude of ascending node

A : Eccentricity times the cosine of the argument of

pericenter (e cos w)
B : Eccentricity times the sine of the argument of

pericenter (e sin )

u : Argument of pericenter plus the true anomaly (w + f)
‘ ¥ : 1 + A cos u+ B sin u
R : Component of the perturbing force in the direction

of the satellite radius vector
S : Component of the perturbing force perpendicular to
| the satellite radius vector and in the orbit plane
W : Component of the perturbing force normal to the

orbit plane

h : Satellite angular momentum
r : Selenocentric radius of satellite
M : Lunar gravitational constant.

The dots in Eqs. (L4) denote derivatives with respect to time,

Since these equations have a singularity at zero inclination,
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equatorial orbits are prohibited., The selenocentric orienta-

tion of the satellite orbit plane is shown in Fig. 2,

F. Disturbed Motion of a Lunar Satellite

As indicated earlier, an exact description of the
perturbed motion of a lunar satellite requires a solution to
the n-body problem. However, it was pointed out that for prac-
tical purposes the problem may be reduced to one involving the
satellite, Moon, Earth and Sun. The equations which govern the
satellite's motion relative to the selenocentric inertial ref-
erence frame will now be developed. Let the (X,Y,Z)-coordinate
system be fixed in space such that the axes are parallel to the
corresponding selenocentric nonrotating (x,y,z)-axes. Let Mg

denote the Moon's mass, m the satellite's mass, and M; the

i
mass of the ith disturbing body. The position vectors for the
respective bodies are defined in Fig. 3. Then, the equations of

absolute motion of the Moon and the satellite are

L
v GM m GM_M.
- m — — m | —_ —_—
Mmrl = 3 (r2 - rl) + j{: 3 (ri - rl) (5)
12 2 "1i
| =
L
. GM,m _ _ GM,m _
o, - —2NE - 7 +Z - (6
F21 =3 F2i

Now, on subtracting Eq. (5) from Eq. (6) and noting that

ro=ry, -y s 5

r=ry, - ry s r=ry=-r;
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FIGURE 3. VECTOR REPRESENTATION OF THE
DISTURBED MOTION OF TWO BODIES.
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the following equation is obtained
.- - 5. R:
r o= - BF o4 Z GMI__D_‘_ _ (7
r o3 R’
i [ i

where p = G(Mm + m). Equation 7 defines the satellite!s ac-
celeration relative to a primary body that is spherical in shape
and has a uniform mass distribution, A satellite in close orbit
of the Moon will, however, be materially affected by a noncen-
tral force field caused by an asymmetrical distribution of the
lunar mass. To account for the Moon's noncentral force effects,
the equation of motion is modified by replacing the central
force term with the gradient of the lunar potential function,.

Hence, Eq. (7) may be written in expanded form as

. _ R D R D
r = -9V - GM_|-2 - &) - aM |—= - ==
ele3 ~ 53 5|73 7 53

e e S S

where V represents the Moon's gravitational potential func-

tion and

3

i S
Ax

o -~
ByJ T

+ oz

v = +

The e and s subscripts refer to the Earth and Sun, respec-
tively. Now, the potential function (V) may be expressed in

the form
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where the terms (Vi) in this expansion are given through the
fourth order in Reference 5 (pp. 121-128). For a triaxial el-
lipsoid of uniform mass distribution, and for a coordinate sys-
tem chosen so that the origin is at the center of mass, it can
be shown that the odd orders of V are zero. |If even orders
greater than two are neglected, then an approximation for the

potential function is given by the expression

e sat A Pe()Pet(z)?
v GMn G[A + B + C A(?—’*'B‘r—)*c‘r—
3

r r

where A, B and T are the principal moments of inertia of

the Moon. The satellite distance is given by

r2 - x2 4 y2 + z2 = (x‘)2 + (y')2 + (z')2

The x-component of the gravitational force is determined from

the partial differentiation

oV

oV oV ox' + oV oy! oV  az!
or

ViV = dx' Ox dy' 9dx + dz!' Jx

or
—a—;—+

In view of the above definition for V, this leads to the

following expression

X
~<

_‘I

Re84T, s A+ e [x)?
by 2 r

<
<
0
I
o
1
o

X
r

:‘1

r

3» iy I v t g [
- _r_S[Amllx + Bmzly + CmBlz]

Similar expressions may be obtained for the y and 2z force

components, Since the forces of interest are those that cause
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perturbations in central force field motion, the term GMm/r2
is removed in the process of defining the components of the per-

turbing acceleration. Then, if we define

__ 3
H=-3 L

A+ B + C . 1_5_7’7();_")2 + E(Tf—')g + E(i—')e
r 2 P

the scalar components of the perturbing acceleration are given

by
X = 6|H 2 - 3 (Rmy x' + Bmpyy' + Tmaqz')
r T 75 ML 21 31
- X - X X
+Gnex_e_3x_x_§ +GMS_5_3_-_§ (8)
pe Re pS RS
Y =6 L- 2—(Kh x' + Bm,,y' + Cmysz')
r ro 12 22 32
Ye - Y Y Y - Y Y
+ GM_ e i _%. + GMg |2 5 - _% (9)
pe Re pe Re
7 -6|H 2 - 2 (Amyax' + Bm + Tmanzt)
- F T T5\Am3 23Y 33
z - Z z z - Z 4
+ GM |2 - —‘; + GM [ —— - -—; (10)
Pe RE Ps RS
where
2 = (x, - )%+ (v, - VB + (z, - 2)?
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R2 = x2 + v_ + 22
e e e
2 _ _ 2 _ 2 _ 2
02 = (xg - )%+ (vg - M2+ (2, - 2)
2 . 2 2 2
Rs = xg + vyg + zg
The inertial coordinates of the satellite are expressed most

conveniently as a function of the orbit elements, in the form

x = r(cos u cos @ - sin u sin Q cos I)
y = r(cos u sin Q@ + sin u cos Q cos I) (11)
z = r(sin u sin I)

Finally, employing standard coordinate transformation tech-
niques, it is easy to show that the components of the perturb-
ing acceleration in the radial, circumferential and normal
directions are given by
R = X(cos u cos @ - sin u sin © cos I)
+ ¥(cos u sin Q@ + sin u cos @ cos I) (12)

+ Z(sin u sin I)

S = X(- sin u cos & - cos u sin © cos I)

+ Y(- sin u sin Q@ + cos u cos Q cos I) (13)

+ Z(cos u sin I)

E
1

X(sin @ sin I)
+ Y(- cos @ sin I) (14)
+ Z(cos I)

Equations (1),(2),(3),(4),(8),(9),(10),(11),(12),(13),

and (14), were programmed for numerical solution with the



Control Data Corporation 1604 computer at The University of

Texas Computation Center.
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Itl. NUMERICAL COMPUTATION

A. Computation Procedure

A computer program to integrate the perturbation
equations was coded in FORTRAN-63 languagelo for use with the
CDC 1604 digital computer. Numerical integration was carried
out using a partial double-precision Adams-Moulton method with

a fourth-order Runge-Kutta starter.16

To facilitate integra-
tion, all input values are scaled to have the same order of mag-
nitude by dividing quantities which have the length dimension by
the factor lOu. An initial value of each orbit element and an
integration mesh size must be specified by the user. After
three starting values are calculated by the Runge-Kutta routine,
the Adams-Moulton routine calculates a fifth value based on the
previous four values, integration is continued by the Adams-
Moulton procedure, which will also calculate (as an option) the
maximum single step error and compare its value with prescribed
limits, If limits are exceeded, the mesh size is either doubled
or reduced by one-half. For this study a 100 second fixed step
size was used, since it was determined that the maximum absolute

6 and lO'll.

error never exceeded the limits of 10~
Each orbit type required approximately 24,000 integra-

tion steps. However, only local maximum and minimum values of

the orbit elements and corresponding time values are detected

and stored by the computer, The intermediate values of the

29
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short period variations are dropped, providing a twentyfold
saving in computer storage space and some reduction in machine
time. A quantitative description of the short period variations
for month long study times would be impractical for this anal-
ysis. Normalized plots of local maximum and minimum values pro-
vide a qualitative description of the envelope of the motion
while preserving some quantitative usefulness.

When integration has terminated, local values of each
orbit element are scanned for the largest and the smallest
value to provide limits for subsequent normalizing. Local
values and associated time values are then stored on magnetic
tape for later use with a computer plot routine.23 Normalized
values of the orbit elements are plotted against time by the

CDC 165 Plotter.

~

8. Accuracy Estimation

There are two types of error associated with the nu-
merical computation procedure used in this study. The first
type is the familiar and unavoidable computer round-off error.
The second type, truncation error, is alway present in any nu-
merical integration scheme. When dealing with highly nonlinear
problems, such as this one, it is extremely difficult to make
final judgements on how these errors affect the overall accu-
racy of the results. There are, however, several ways of ef-
fectively controlling these errors. The primary requirement
for simultaneous control of both types of error is a proper in-

tegration mesh size. Too small a mesh size results in more
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integration steps than are actually necessary, causing exces-
sive error propagation by rounding. Increasing the mesh size
reduces round-off error, but if the mesh size is too large,
truncation error becomes a problem.

(1) Round-0ff Error. Practically all of the computer

calculations are carried out using single precision arithmetic
which employs 11 decimal digits. The rounding error limit for

a single arithmetic operation is 0.5 x 10_12. The cumulative
effect of this error can be estimated by comparing single pre-
cision results with double precision (25 decimal digits) results
from the same initial conditions. The results for two 30 orbit

computer runs differed at most by .5 x 10711,

This result, how-
ever, is based on double precision calculations for the satel-
lite coordinate transformation matrices and for the distrubing
acceleration due to the Earth and Sun. This test does indicate
no serious error build-up. Use of double precision throughout
would, for all practical purposes, eliminate round-off error,
but machine time would be increased by a factor of from 20 to
30. A more economical procedure is to use double precision
only in arithmetic operations that are most susceptible to
round-off error, such as the addition of a small number and a
relatively large number. This procedure is used in the Adams-
Moulton routine and also in the routine that interpolates for
distrubing body coordinates. To help control round-off error
in single precision calculations, the terms in the mathematical
expressions were arranged according to a set of rules given in

Reference 18, In view of these precautions, one might expect
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results that are free of this type error through six digits.
The final normalized values of the orbit elements would be in
error by less than 1%. Precision through five digits would
still preserve range accuracy to within + 100 meters.

(2) Truncation Error, The local truncation error as-

sociated with the Adams-Moulton method can be effectively con-
trolled by the error check and mesh size adjustment procedures
mentioned previously, For this investigation, however, the
highly stable characteristics of the Adams-Moulton method per-
mitted the use of a fixed mesh size, which eliminated the ma-
chine time required for error check calculations, The calcu-
lated error is an approximation for the true maximum absolute
single step error, or the true local truncation error. The
single step error was monitored during computer program testing,
using a fixed mesh size of 100 seconds and different sets of
initial conditions. It was found that the magnitude of the
calculated error remained within the limits 2 x 10”9 and

8 x 10711 A rough estimate of the upper limit for the accumu-
lative error, based on 24,000 integration steps, assuming no
round-off error and error propagation in one direction, would
be of the order 10™2, Since the truncation error can be posi-
tive or negative, error build-up to this limit is unlikely,
Hence, one would expect at least five digit precision with re-
gard to truncation error. Assuming round-off and truncation
error are independent, it would be reasonable to expect overall

precision through five digits.



IV. RESULTS

A. Specification of Orbit Types

The purpose of this investigation is to analyze the
characteristics of circular satellite orbits having near equa-
torial inclinations, Specific initial conditions are chosen so
that results can be compared with the results given in Refer-
ence 4, Such a comparison would test computer program validity
and, in addition, would provide a basis for evaluating the
solar effects,

Eight orbit types are selected for this analysis.
Orbits having initial inclinations of 0.5° and 20° are each as-
signed initial altitudes of 50 miles (P = 1822.20 KM) and 150
miles (P = 1981.35 KM) and are referred to as orbit type 1
through 4 (prograde orbits). Similarly, orbits having initial
inclinations of 179.5° and 160° are referred to as orbit
type 5 through 8 (retrograde orbits). 1In all cases initial ec-
centricity is set at zero (initially circular orbits), and sat-
ellite motion starts at the ascending node (R = 222.113°),

which is a point in the lunar equatorial plane on the side of

the Moon opposite the Earth., Hence, the initial value of the
argument of pericenter plus the true anomaly is zero (u = o
+ f = 0).

Each orbit type is numerically integrated over a
period of 27.55 days (i.e., the Moon's anomalistic period).
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This time span is equivalent to 341 satellite revolutions for
P = 1822.20 KM and 301 revolutions for P = 1981.35. Results
are obtained for the orbit elements P, I, @ and e. The ele-
ment u is not considered because & has little significance
for circular orbits and because Bornl‘L found that u has a

linear variation, indicating negligible perturbing effects,

B. Comparison with the Results from Reference 4

A similar investigation carried out by Born is de-
scribed in the Introduction of this report. Even though there
is some difference in mathematical models, the computed times
for orbit element local maximum and minimum values are the same,
thus allowing direct comparison of element values. Tables 1
and 2 present a comparison of initial and final values of P, I,
Q0 and e for 80 revolutions. Unusually close agreement exists
for all orbit types. Maximum differences in the final values
are as follows: AP = 8 meters, AI = 0,008°, A0 = 1.134° and
Ae = 0,0000057, where A( ) indicates the difference between
the values from the two investigations. Note that the differ-
ence in the initial values of is 0.163°, which accounts for
part of the difference in the final values of Q. It is inter-
esting to note that § = 222.113° is determined by Earth coordi-
nates obtained from JPL tapes, whereas Brown's truncated series
expansions lead to the value Q = 222,276°,

The comparison lends support to the argument that
both computer programs are valid, particularly since they were

written independently. Some disagreement is expected due to
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dissimilarities in the mathematical models. Born excluded the
Sun and considered a fixed Earth-Moon node. Earth ephemerides
are generated from different sources and values for the three

lunar moments of inertia differed by 7.0 x 10‘6, 3.0 x 10—6

and
5.2 X 10'6.

The estimate of solar effects given earlier in this
report and the close agreement in the foregoing comparison, in-
dicate that the separate or combined effects of the above men-

tioned model differences do not appreciably influence the orbit

types considered over short periods of time,

C. Graphical Analysis

The discussion that follows deals with variations of
the orbit elements P, I, Q and e over a period of 27.55 days.
The tabular data are rounded values obtained from computer
print-outs and the graphical results are tracings of 32 auto-
matic machine plots. Table 3 (see page 38) presents orbit ele-
ment boundary values for orbit types 1 through 4 (prograde
motion) and Table 4 (see page 39) gives similar data for orbit
types 5 through 8 (retrograde motion). The last column of each
table lists the maximum variation of each orbit element and is
obtained by differencing the tabulated maximum and minimum
values,

Graphical presentations of the monthly envelopes of
the short period variations are given in Figs. 4 through 19
(pages 46-53), Each individual envelope is obtained by plotting

only normalized values of the local maximum and minimum points
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38

BOUNDARY VALUES OF ORBIT ELEMENTS--PROGRADE ORBITS

e e
Orbit
Type |Element! Initial Final | Maximum| Minimum|Difference
P-KM [1822.20 |1821.97111822,215|1821,7k2 0,473
N I 0.5° 0.467° 0.5° 0.hs5k? 0.0k6°
Q 222.113°|176.765°{222,113°]176.765° bs5,.35°
e 0.0 0.000L24l0.000815 0.0 0.,000815
P-KM [1981.35 [1981.196[1981.367[1980, 90k 0.46L4
» I 0.5° 0.456° 0.5° 0.4h6° 0.054°
Q 222,113°|184,126°|222,113° [184,126° 37.99°
e 0.0 0.000594]0.000716 0.0 0.000716
P-KM [1822.20 [1821.916]1822,210|1821.650 0.560
3 I 20° 19.800° 20° 19.587° 0.413°
Q 222,113°(189.003°[222,113°(189.003° 33.11°
e 0.0 [0.000391|0.000757| 0.0 0.000757
P-KM }1981,35 |1981.153|1981.360(1980.821 0.539
L I 20° 19.859°| =20° 19.652°| 0.348°
Q 222,113°}197.066°|222,113°|197.066° 25.05°
e 0.0 0.000539{0.000662 0.0 0.000662
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TABLE L
BOUNDARY VALUES OF ORBIT ELEMENTS--RETROGRADE ORBITS
Orbit —
Type [Element] Initial Final Maximum]| Minimum{Difference
P-KM |1822.20 [1822.113|1822,215[1821.745 0.470
5 I 179.5° [179.570°(179.570°| 179.5° 0.069°
Q 222.,113°(250.254°| 250,254°|222,113° 28.14k°
e 0.0 |0.000448|0.,000781 0.0 |0.000781
P-KM |1981.35 [1981,059/1981.367/1980.907| 0.460
‘ I 179.5° |179.576°[179.576°| 179.5° 0.076°
Q 222.113°]239.832°|239.832°(222,113° 17.72°
e 0.0 0.000521}0.000675 0.0 0.000675
P-KM |1822,20 |1822.049(1822,.206]1821.656 0.550
I 160° 160,002°|160,055°]159,568° 0.487°
! Q 222,113°|255,.984°|255,984°| 222,113° 33.87°
e 0.0 0.000427]10.0007k5 0.0 0.0007ks5
P-KM ]1981,35 |1981.,031|{1981.356{1980.828 0.528
8 I 160° 160.059°[160,059°(159.679°| 0.380°
Q 222.,113°|2k7.501°(24k7,501°|222,113° 25.39°
e 0.0 0.000L86]0.0006L4k4 0.0 0.0006k4L
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of the short period oscillations (not shown) against time.
Orbit element maximum and minimum values listed on each plot
correspond to the ordinate values one and zero, respectively.
An element value at any point on a plot may be calculated by
adding to the listed minimum value the product of the normal-
ized value and the ordinate range., Note that the very small
ranges for P, I, and e appear greatly exaggerated on a nor-
malized scale; however, this method of presenting the data
facilitates analysis. The envelopes for Q and portions of
I appear as single lines since the amplitudes of their oscil-
lations are too small to distinguish on the plots. Each graph
consists of two separate plots of an orbit element so that
comparisons may be made with convenience. Thus graphs for the
elements P, Q and e give a comparison for different inclina-
tions, whereas the graphs for inclination present envelopes for
different altitudes. Note that when altitude is the variable,
the abscissa must represent time in days only, since each curve
is based on a different number of revolutions,

It is important to note that the time span of interest
(27.55 days) corresponds to the Moon's period of rotation about
its spin axis and, also, to its period of revolution about the
Earth, At time zero the projection of the Earth-Moon line on
the lunar equatorial plane will coincide with the satellite's
line of nodes. The Earth-Moon line will rotate (counterclock-
wise as viewed from the positive z-axis) through approximately
90° increments every 7 days, such that one complete revolution

is described in just under 28 days. The x'-axis (Moon's
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principal axis of inertia) will always be within 7° of the
Earth-Moon line. A knowledge of the position of the Earth and
the x'-axis will be useful in interpreting the graphical data.

(1) Semi-Latus Rectum. Curves for the variation of

the semi-latus rectum experience a significant change in shape
with increasing inclination for prograde orbits and decreasing
inclination for retrograde orbits. Envelope boundaries are
nearly linear for the equatorial inclinations and evolve into
fully developed sinusoidal shapes at inclinations of 20° and
160°, From the graphical data alone there is no way of deter-
mining what combination of lunar and terrestrial gravitational
effects causes this phenomena. At the time of this writing,
the unpublished results from a comparison of numerical data and
machine plots for two computer runs provided an explanation,
One set of results is based on a Moon and Earth-only mathemat-
ical model and the other is based on a Moon-only model. Some
of the results are deemed important enough to warrant their
inclusion here without presenting a formal graphical justifica-
tion. Each orbit had an initial inclination of 170° and radius
of 1822.20 KM. A comparison of the machine plots of the monthly
envelopes for the semi-latus rectum revealed that the shape of
the envelope boundaries was practically the same in each case,
and that all points of the lower boundary of the Moon-only
envelope were about L4LO meters (one-tenth increment on the nor-
malized scale) above the Moon and Earth-only lower boundary.
This evidence tends to support the contention that lunar ef-

fects are much more important than terrestrial effects with
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respect to the shape and amplitude of the envelope for the
short period oscillations of the semi-latus rectum. By com-
paring Fig. 4 with Fig. 5 and Fig. 12 with Fig. 13, it is
evident that envelope shape is practically independent of alti-
tude for a given inclination. Note that for a given altitude
and inclination, the amplitude of oscillations does not depend
on the direction of satellite motion. Note, also, that the
envelopes for prograde motion (orbit types 1-4) have a 12 day
period as opposed to a 14 day period for retrograde motion
(orbit types 5-8). In view of what has been said about the
motion of the Earth-Moon line and the x'-axis, bi-monthly
periods would be expected, The two day difference in the pe-~
riods can be attributed to the effects of a large nodal re-
gression rate for prograde motion and a nodal progression rate
of comparable magnitude for retrograde orbits.

(2) Inclination. The results for the inclination are

presented in Figs. 6, 7, 14 and 15. It can be seen that the
amplitudes of the short period oscillations are quite small for
all orbit types. Note that all envelopes appear to have a sec-
ular trend. This is most apparent for orbit types 5 and 6,

The test comparison, mentioned previnusly, revealed that sec-
ular trends were not present in the Moon-only plot for inclina-
tion. Successive minimum points on the envelope for inclination
in the Moon and Earth case differed by 0.2 on the normalized
scale. Apparently the Earth alone causes this secular or long-
term variation. When the Earth exerts a force normal to the

orbit plane, the effect is transmitted to I by the force
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term (W) in Eq. (4). The direction in which this perturbing
force acts determines the direction of the secular variation.
Note that an increase in altitude causes an increase in the
range of variation of inclination for orbit types 1, 2, 5 and 6
and the range decreases with altitude for orbit types 3, k4, 7
and 8., This rather striking reversal provides a clue for esti-
mating the relative importance of Earth and Moon effects on
inclination. Since the range of I is relatively small for
the near equatorial inclinations, the effects of small terres-
trial forces become apparent when the change in altitude is
toward the Earth. On the other hand, the relatively large
range of I at inclinations of 20° and 160° indicate that lunar
force effects have become much more dominant, causing the range
of I to decrease with increasing altitude. In this case the
effect of a small increase in the terrestrial force is not no-
ticeable. Born's results show that the critical inclination
for reversal must be less than 10°. Finally, note that the pe-
riods of the long-term variations are, once again, 12 and
14 days.

(3) Longitude of Ascending Node. The envelopes for

the short period oscillations of QO are shown as single lines
for reasons discussed previously, Actually, thé width of these
lines is a reasonable estimate for the width of the envelopes
(Figs. 8, 9, 16 and 17). The gaps appearing in curves for
denote the absence of local critical points, meaning that, here,
the element varies monatonically., A comparison of the results

obtained from the two computer runs showed that the change in Q
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due to Earth effects was 0.63°, which is small compared to the
total change of 34.,9°. Apparently the Moon's triaxiality is
the dominant factor with regard to the variation of the node
for near-lunar satellites. Figures & and 9 show that the node
regresses for prograde orbits and Figs. 16 and 17 show a pro-
gressing node for retrograde orbits. This is to be expected
since the sign of W (the perturbing force normal to the orbit
plane) in the equation for { s negative when prograde motion
exists and positive for retrograde motion. Note that the range
of variation of Q increases with decreasing altitude for a
given inclination. This is so because the Moon appears to be
the dominant factor in this case, Although almost all of the
curves for @ are nearly linear, it is still possible to deter-
mine the periods of the long-term variations. They are not sig-
nificantly different from those noted for P and I. The gaps
tend to appear when the x'-axis is either parallel or perpen-
dicular to the orbit!s line of nodes.

(4) Eccentricity. The graphical results for the ec-

centricity indicate that this element experiences no signifi-
cant change when altitude, inclination and the direction of
satellite motion is changed (Figs. 10, 11, 18 and 19). The
maximum value of e increases slightly with decreasing alti-
tude. A similar increase occurs when the direction of satel-
lite motion is reversed (retrograde to prograde). The results
of the two computer runs, testing for the separate effects of

the Earth and Moon, indicate that subharmonics occurring near
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the 7 and 21 day points are caused by the Moon's noncentral
force field., Adding in the Earth effects simply causes a

slight contraction of the envelopes at these points.
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V. CONCLUSIONS AND RECOMMENDATIONS

A computer program was written to be used with the
CDC 1604 digital computer for integration of a set of first-

order nonlinear differential equations which define the time

rates of change of the satellite orbit elements. The program
incorporates an Adams-Moulton numerical integration method with
a Runge-Kutta starter. Machine plots for the variation of the

orbit elements with respect to time were used to analyze the
characteristics of near-circular lunar satellite orbits over a
period of approximately 28 days.

The tabular and graphical results for eight orbit
types have led to the following conclusions:

(1) A1l orbit types exhibit highly stable character-
istics over an interval of 27.55 days.. The appearance of sec-
ular trends in the envelopes of the short-period variations of
inclination should not be interpreted as an indicator of future
instability, since the trends shown may be portions of long-
term periodic variations,

(2) The envelopes of the short-term oscillations of
values of the orbit elements P, I, @ and e have periods of
12 days for prograde orbits and 14 days for retrograde orbits.

(3) The shape of the envelopes for the semi-latus
rectum is sensitive to changes in inclination and relatively
insensitive to changes in altitude.

54
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(4) The variational range of the envelopes for the
inclination increases with altitude at initial inclinatiaons of
0.5° and 179.5° and decreases with altitude..at inclinatians of
20° and 160°, Hence, it appears that for short-term motion,
the Earth effects are relatively unimportant with respect to
significant perturbations in inclination.

(5) The amplitude of the long-term oscillations of
the inclination increases significantly when the orbit plane
becomes more inclined to the lunar equatorial plane. The prin-
cipal cause of the phenomena appears to be the component of the
Moon's noncentral gravitational force normal to the satellite
orbit plane.

(6) The line of nodes regresses for prograde orbits
and progresses for retrograde orbits. The secular rate of
change of Q decreases with altitude for a given inclination
and decreases with increasing inclination for a given altitude.

(7) The amplitude of short-period oscillations of the
eccentricity are noticeably insensitive to changes in either
altitude or inclination.

(8) The manner and extent to which the Earth influ-
ences the variation of P, @, and e cannot be determined from
the graphical data given in this report.

Undoubtedly, a more extensive investigation, by ma-
chine computation, of certain areas of this problem would lead
to more specific interpretations of the graphical data, and
would provide a means of improving the method of solution,

Some areas of interest are:
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(1) Comparing machine plots based on mathematical
models that include individual and collective effects of the
Moon, Earth, Sun and variable Earth-Moon node would establish
criteria for simplifying the problem commensurate with desired
accuracy limits,

(2) Computer test runs, exploiting the double preci-
sion feature, could establish definite limits for truncation
and round-off error.

(3) A significant reduction in machine time can be
realized by generating specialized ephemeris tapes containing
single precision disturbing body coordinates with a time incre-
ment to match the value of a fixed integration mesh size.

(4) For near-lunar orbits, determination of the im-
portance of the fourth-order term of the lunar gravitational
potential function would provide a check on the validity of

results based on the second-order term only.
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